{"blocks": [{"key": "05b82e18", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "9715a2b1", "text": "Data science team must offline-evaluate a classifier that labels videos as harmful.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "a4e3e7fd", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "b41d7a57", "text": "What offline evaluation framework would you use? Detail suitable metrics (e.g., precision, recall, PR-AUC), handling class imbalance, ground-truth collection, threshold selection based on business costs, and potential fairness checks.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "12d96817", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "9df31b37", "text": "Discuss label skew, cost of false positives vs negatives, and calibration.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}