{"blocks": [{"key": "9847c9e6", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "d6eecaa8", "text": "You are analyzing comment activity to distinguish between genuine users and potential fake accounts.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "48c0170c", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "f1d89628", "text": "Given a sample of comment counts per user, how would you construct a 95% confidence interval for the population mean? What is the sampling distribution of the sample mean and how does sample size affect its variance? How do you compute and interpret the 95th percentile of the comment distribution?", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "952f7225", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "e9ae28c7", "text": "Apply the Central Limit Theorem, standard-error = σ/√n, and percentile definition to articulate assumptions and impact of sample size.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}