{"blocks": [{"key": "588197e4", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "ffc77722", "text": "Using the cleaned retail data, you must build a model to predict whether a customer will place an order next month.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "b5f60394", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "e2752630", "text": "Split the prepared dataset into 80/20 train–test sets with stratification on the target variable. Standardize numeric features and one-hot encode categorical features in a reproducible pipeline. Train a gradient-boosted tree (e.g., XGBoost or LightGBM) and report AUC on the held-out test set. List two techniques you would use to improve the model’s generalization if AUC is low.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "a3fdeeee", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "6597e4d5", "text": "Demonstrate scikit-learn pipelines and proper evaluation.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}