{"blocks": [{"key": "fde490c5", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "98805d65", "text": "Product-facing data-science interview on choosing and configuring tree-based ensemble models.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "31ca95a9", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "cad731c7", "text": "Compare Random Forests with Gradient Boosting Decision Trees such as XGBoost. When would you prefer one over the other in a production setting? Do tree-based models require feature scaling or normalization? Explain the theoretical reason and any practical exceptions.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "4dad95d2", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "fb245a29", "text": "Discuss bias-variance, overfitting control, interpretability, parallelism, sequential boosting, split criteria independence from feature scale.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}