{"blocks": [{"key": "42905bc8", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "f9263490", "text": "Interview on classical machine-learning fundamentals and computer-vision–related techniques.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "fee86472", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "2de81a83", "text": "Differentiate overfitting and underfitting. How do you detect and mitigate each? What is data augmentation? Provide image-specific examples. Describe the main components and purposes of a Convolutional Neural Network. How does an RNN process sequential data? Detail the roles of positional embeddings, self-attention, residual connections and feed-forward networks in a transformer encoder. What is dropout and why does it help? Compare bagging and boosting in terms of bias, variance and algorithm behavior.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "b7093556", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "aa2811d0", "text": "Define concepts, mention bias-variance trade-off, regularization tricks, architectures, and practical diagnostics.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}