{"blocks": [{"key": "4b496d31", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "534d8bb7", "text": "Designing a video-recommendation push system: selecting k videos from a large inventory and evaluating product impact between friends.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "ccf9b5ed", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "89e4b541", "text": "a) From an inventory of N videos, what is the probability a specific ordered set of k videos is pushed to a user? What about any unordered subset of size k?", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "ac6618f5", "text": "b) Given an event’s probability, compute its complementary probability and apply it to the video-selection context.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "f464ad6a", "text": "c) Should we push the same video to two friends or different videos? Discuss pros, cons, and expected metrics impact.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "44435e35", "text": "d) Which statistical or machine-learning model would you use for this recommendation problem and why?", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "088e1638", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "f20c5b41", "text": "Use permutation/combination formulas, complementary events, discuss CTR vs. content diversity, and mention models like collaborative filtering or sequence models.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}