{"blocks": [{"key": "a5817426", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "e7f71821", "text": "Experian DataLabs onsite – machine-learning deep-dive", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "22d06b68", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "b1c68bdb", "text": "Explain how PCA achieves dimensionality reduction and why L2-normalization beforehand can matter.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "dce1e6c7", "text": "Derive the logistic-regression gradient via back-propagation.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "56a4607e", "text": "When would you move the classification threshold to improve FPR or TPR?", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "c1d38e5d", "text": "What baseline models did you compare against and why did you finally choose logistic regression?", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "21b24826", "text": "Define knowledge-informed machine learning and give an example.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "693490e3", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "11717f56", "text": "Discuss eigenvectors/variance, maximum-likelihood gradients, ROC curves, model-selection criteria, domain priors.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}