{"blocks": [{"key": "8f3e062c", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "4506f2bb", "text": "Discussing linear regression feature representations during a Data Scientist interview.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "2a6d487b", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "bde808fc", "text": "Given two original regressors x1 and x2, model a is linear in x1 and x2. Model b is linear in the transformed features x1 + x2 and x1 - x2. Are models a and b equivalent? Provide a mathematical explanation. If you have more than 1,000 predictors and want to fit a linear model, what problems might occur and how would you mitigate them?", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "57a70bd1", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "1f53c5c9", "text": "Recall that linear transforms of features can represent same subspace; consider rank, multicollinearity, over-parameterization; mention overfitting, regularization, dimensionality reduction for many predictors.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}