{"blocks": [{"key": "f25bfc98", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "0b0f25b7", "text": "Given a weighted directed acyclic graph (DAG) where each node v has a score w(v) and each edge (u→v) has a time cost t(u,v), starting from node \"start\" (w(start)=0) and ending at any node whose name begins with an underscore \"_\", find the path P that maximizes Score(P) = Σ w(v) − Σ t(u,v). Output the maximum score (and optionally the corresponding path).", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}