{"blocks": [{"key": "94e88bdc", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "cd5e3d56", "text": "Amazon currently tracks only the number of packages delivered and total delivery time for each driver. Design a robust framework to evaluate delivery-driver performance.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "8c167ead", "text": "Identify additional data you would collect (e.g., route characteristics, weather, traffic, package weight, customer feedback, vehicle type, stop density, promised delivery windows).", "type": "unordered-list-item", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "b23698ef", "text": "Explain why each data point matters and how you would gather it.", "type": "unordered-list-item", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "e4515617", "text": "Propose quantitative metrics or a scoring model that fairly compares drivers who operate under different conditions.", "type": "unordered-list-item", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "d8cb9149", "text": "Outline how you would surface insights to drivers and managers and iterate on the system over time.", "type": "unordered-list-item", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "648de341", "text": "\u200b", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "c5e1b951", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "96d2f3f7", "text": "Think about normalizing for factors outside the driver\u2019s control\u2014distance, urban vs. rural routes, real-time weather and traffic, peak season spikes.", "type": "unordered-list-item", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "90a34680", "text": "Consider leading (process) and lagging (outcome) indicators: safety incidents, on-time rate, customer satisfaction, fuel efficiency.", "type": "unordered-list-item", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "46cc7b6e", "text": "Discuss statistical or ML techniques (e.g., regression, clustering) to isolate driver impact from external noise.", "type": "unordered-list-item", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}