{"blocks": [{"key": "cd284eca", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "70448f61", "text": "Classifying reviewers as lazy or careful with limited labels", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "24c5d917", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "55b33322", "text": "Propose a classification rule based on P(lazy | data) > 0.5 using Bayes’ theorem. Given the true mixture and review accuracies, derive the false-positive and false-negative rates of this rule. If every reviewer is required to write the same large number of reviews (e.g., 100), how will type I and type II error rates change?", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "4c88c5b5", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "73013200", "text": "Treat reviewer type as the latent class and use a Bayesian optimal decision boundary; error rates shrink as review count grows.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}