{"blocks": [{"key": "a57e3702", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "f327234a", "text": "After deciding to release the recommendation feature, the team must generate and assign individualized product lists to customers.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "f660242a", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "05035d6a", "text": "Which machine-learning technique(s) would you employ to create ranked recommendation lists for users? How would you incorporate user role, context, or other constraints when assigning the recommended items?", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "ab60d4b6", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "9cf78cea", "text": "Discuss collaborative filtering, learning-to-rank, embeddings, contextual or bandit approaches, and serving architecture.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}