{"blocks": [{"key": "d14af8a8", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "3db30af7", "text": "A social-media company wants to evaluate a new feed-ranking algorithm intended to increase daily active minutes.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "79f263d5", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "1359db04", "text": "a) Formulate the A/B test hypothesis (null and alternative) and select primary and guardrail metrics.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "32746980", "text": "b) Determine the minimal detectable effect and required sample size for 95% power, two-tailed α = 0.05.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "f32f8ea8", "text": "c) After launch, the product dashboard shows a time-series chart of average active minutes by group. Describe what you look for to confirm experiment health (e.g., parallel pre-period, no data loss) and how you would interpret a sudden mid-test dip.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "b4762bd0", "text": "d) Explain how you would establish causal inference if rollout is geography-based rather than randomized.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "56f47c7f", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "542662b5", "text": "Cover randomization, practical significance, and difference-in-differences when random assignment is impossible.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}