{"blocks": [{"key": "2efbf967", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "f145baaf", "text": "An A/B test offers free users a limited-time trial of the paid plan to see whether it increases paid subscriptions and reduces churn.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "5c57dffe", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "7e118816", "text": "Compute the signup (paid-conversion) rate for treatment vs. control and the percentage lift. 2. Test whether the lift is statistically significant (state your test, null/alt hypotheses, p-value or CI). 3. Calculate and compare cancel rates during the trial and after the first paid billing cycle. 4. Estimate net paid-subscriber change after 30 days and 60 days, incorporating both signups and cancels. 5. What additional metrics or user segments would you examine before recommending a full roll-out? 6. Summarize the experiment outcome and give a go / no-go recommendation with supporting numbers.", "type": "unordered-list-item", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "f38f5caf", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "c4e499d9", "text": "Standard A/B-testing framework: define metrics, check randomization, use proportion test or delta method, segment by tenure, bucketed time windows.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}