Using the schema and sample data below, write: (1) a single SQL query to compute daily metrics for the local date 2025-09-01 in America/Los_Angeles, and (2) a Python (pandas) transformation.
Goal A (SQL): For 2025-09-01 (America/Los_Angeles local date derived from UTC timestamps), output one row with:
Goal B (Python/pandas): Given a DataFrame events with the columns below (including a dict-like props_json), produce a DataFrame with columns [user_id, local_dt, sku, dedup_add_to_cart_cnt] where local_dt is the America/Los_Angeles date of event_time_utc; deduplicate add_to_cart within each [user_id, session_id, sku] by treating any subsequent add_to_cart within 2 minutes as the same action; count distinct deduped add_to_cart per [user_id, local_dt, sku]. Show idiomatic pandas code (no UDFs) and explain time zone handling.
user_id | signup_utc | referrer 1 | 2025-08-20 13:02:10 | ads 2 | 2025-08-28 21:50:05 | seo 3 | 2025-08-31 02:11:34 | direct 4 | 2025-09-01 04:00:12 | ads 5 | 2025-09-01 05:47:40 | partner
user_id | event_time_utc | event_type | session_id | device | props_json 1 | 2025-08-30 16:00:00 | add_to_cart | s1 | ios | {"sku":"A1","qty":1} 1 | 2025-08-30 16:01:00 | add_to_cart | s1 | ios | {"sku":"A1","qty":1} 1 | 2025-08-30 16:05:00 | purchase_click | s1 | ios | {} 2 | 2025-09-01 01:02:03 | add_to_cart | s2 | web | {"sku":"B2","qty":2} 3 | 2025-08-25 09:10:00 | add_to_cart | s3 | android | {"sku":"C3","qty":1}
order_id | user_id | order_time_utc | amount_usd | status | refund_time_utc 10 | 1 | 2025-09-01 16:15:00 | 120.00 | paid | 2025-09-01 18:00:00 11 | 1 | 2025-09-01 16:20:00 | 35.00 | canceled | null 12 | 2 | 2025-09-01 02:15:00 | 50.00 | paid | null 13 | 3 | 2025-08-26 11:00:00 | 20.00 | paid | 2025-08-27 08:00:00 14 | 4 | 2025-09-02 07:00:00 | 15.00 | paid | null
user_id | dt | variant 1 | 2025-09-01 | treatment 2 | 2025-09-01 | control 3 | 2025-09-01 | treatment 4 | 2025-09-02 | control 5 | 2025-09-01 | treatment