Pandas required. You are given a DataFrame df with columns: user_id (int), pin_id (int), pin_type (str), category (str or None), time_spent_sec (numeric). Goal: among video pins, find the canonical category with the highest average time_spent_sec. Requirements:
Example inputs category_map = { 'home': 'lifestyle', 'food & drink': 'food', 'recipe': 'food', 'travel': 'travel' }
df (illustrative rows) user_id | pin_id | pin_type | category | time_spent_sec 1 | 10 | 'video' | 'Food & Drink' | 120 2 | 11 | 'video' | None | 200 3 | 12 | 'static' | 'Home' | 90 4 | 13 | 'video' | 'Recipe' | 240 5 | 14 | 'video' | 'DIY' | 180 6 | 15 | 'vedio' | 'food & drink ' | 60
What is the top_category and its average time among video pins after mapping and cleaning?