{"blocks": [{"key": "6ea8d94b", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "727ebd01", "text": "General ML theory and practice questions during a technical interview.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "ade5e834", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "6c758c6e", "text": "a) How do you handle missing values before model training and why?", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "d63b5948", "text": "b) Given a business scenario, how would you choose an appropriate ML algorithm and justify it?", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "50646f7e", "text": "c) Explain Random Forests in lay terms and contrast them with linear regression.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "51deaf76", "text": "d) Define overfitting vs. underfitting and methods to detect/mitigate each.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "504a78b2", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "8cc69eb7", "text": "Cover imputation, algorithm bias-variance trade-off, ensemble intuition, cross-validation and regularization.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}