{"blocks": [{"key": "429d9531", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "979ffe68", "text": "Product team wants to launch a new recommendation algorithm and asks for a rigorous A/B test plan.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "bb86a0ba", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "aa065d8a", "text": "Design an A/B test to measure the uplift of the new recommender on GMV. Which primary and guardrail metrics will you track and why? Compute required sample size assuming 3% baseline conversion, 7% relative lift, α=0.05, power=0.8. How would you address novelty effect and uneven seasonality across groups? Explain how you would interpret results if the primary metric is flat but secondary engagement metrics improve.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "014392da", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "2d066271", "text": "Talk randomization, CUPED, sequential testing, and post-test segmentation.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}