{"blocks": [{"key": "7cbbddc9", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "2825b82d", "text": "Detecting fake accounts on a social-commerce platform", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "f8ac67f1", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "cf277744", "text": "How would you identify fake accounts in our user base? What features and modeling approach would you use to build a classifier? How would you evaluate the model’s performance and monitor drift? What is the impact of fake users on the overall ecosystem (buyers, sellers, ads)? We found that 3% of accounts are fake—what conclusions or next steps does this number suggest?", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "3b4294f6", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "96b5b8ed", "text": "Discuss feature engineering, supervised vs. unsupervised methods, precision-recall trade-offs, A/B testing for business impact.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}