{"blocks": [{"key": "54c33350", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "d32b785d", "text": "Science-breadth interview for an Amazon Applied Scientist role, assessing foundational understanding of common machine-learning algorithms.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "08cd9d7f", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "59a1b489", "text": "a) Explain in detail how a decision-tree model is trained: how split points are chosen, how stopping criteria/pruning work, and how overfitting is avoided. b) Name at least three clustering algorithms and describe the core principle behind each one.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "4d94c13f", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "d3c1cdb6", "text": "Cover impurity measures (Gini/entropy), information gain, pre-pruning vs post-pruning; for clustering mention K-Means, DBSCAN, Hierarchical, Gaussian Mixture, etc., and highlight distance, density or probabilistic assumptions.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}