{"blocks": [{"key": "9afc1a9b", "text": "Scenario", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "1e9ae385", "text": "You are asked to choose and tune models for forecasting marketplace demand and detecting fraud in a highly imbalanced dataset.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "9d26f813", "text": "Question", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "282dd71f", "text": "Explain how ordinary least squares linear regression works and state its key assumptions. Compare gradient-boosted trees, random forests, and bagging; when would you prefer each? Your positive class is 0.2 % of the data. How would you handle this imbalance during model training and evaluation? Describe a full workflow for building a time-series forecasting model when seasonality and trend are present.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "2c82eede", "text": "Hints", "type": "header-two", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}, {"key": "cabc15bf", "text": "Cover data preprocessing, feature engineering, resampling/weighting, proper metrics, and cross-validation for temporal data.", "type": "unstyled", "depth": 0, "inlineStyleRanges": [], "entityRanges": [], "data": {}}], "entityMap": {}}